Predict the response variable in validation datasets.
Source:R/metapredict_predict.R
metapredict.Rd
Merge the discovery datasets with each validation dataset, train a glmnet
model on the samples from the discovery datasets, then predicts the response
variable for the samples in the respective validation dataset.
Usage
metapredict(
ematList,
studyMetadata,
sampleMetadata,
discoveryStudyNames,
alpha,
lambda,
weights,
batchColname = "study",
covariateName = NA,
className = "class",
type = "response",
...
)
Arguments
- ematList
Named list of expression matrices.
- studyMetadata
data.frame
of study metadata.- sampleMetadata
data.frame
of sample metadata, with rownames corresponding to sample names.- discoveryStudyNames
vector of study names for training.
- alpha
value of alpha for the elastic net mixing parameter.
- lambda
value of regularization parameter.
- weights
vector of weights for training the
glmnet
model.- batchColname
column in
sampleMetadata
containing batch information forsva::ComBat()
.- covariateName
column in
sampleMetadata
containing additional covariates forsva::ComBat()
besides batch.- className
column in
sampleMetadata
containing values of the response variable.- type
type of prediction to make, passed to
glmnet::predict.glmnet()
.- ...
Other arguments passed to
glmnet::glmnet()
.
Value
A named list of objects from glmnet::predict.glmnet()
.